章一
我们先已在"物学"论文中陈述了可感觉事物的本体与物质,以后又讨论过具有实现存在的本体。如今,我们研究的问题是:在可感觉本体之外,有无不动变而永恒的本体,若说有此本体,则又当研究这是什么本体。我们应该考虑到各家的主张,倘彼诚立说有误,吾人当求免于同样的瑕疵,如吾人之用意与诸家不无相通而可互为印证之处,则吾人亦可无憾于自己的议论;人欲推陈出新,以鸣其道于当世,良愿于古人所已言及者有所裨益,如其未必胜于昔贤,亦愿不至甚愧于旧说而已。
对这问题有两种意见:或谓数理对象——如数,线等——
为本体;或谓意式是本体。因为(一)有些人认为意式与数学之数属于不同的两级,(二)有些人认为两者性质相同,而(三)另一些人则认为只有数理本体才是本体,我们必须先研究数理对象是否存在,如其存在,则研究其如何存在,至于这些是否实际上即为意式,是否能为现成事物的原理与本体以及其它的特质,均暂置不论。以后,我们再照一般的要求分别对意式作一般的讨论;许多论点,在我们院外讨论中便已为大家所熟悉,我们这里大部分的研究,该当于现存事物的诸本体与原理是否为数与意式这一问题,确切有所阐明;在讨论了意式以后,这就剩下为第三个论题。
假如数理诸对象存在,它们必须象有些人所说存在于可感觉对象之中,或是存在于可感觉事物以外(这个也有些人说过);若说这两处都不存在,那么它们或是实不存在,或是它们另有特殊意义的存在。所以我们的论题不是它们的存在问题,而是它们怎样存在。
章二
说"数理对象独立存在于可感觉事物之中"是一个矫揉造作的教义,这我们已在讨论疑难问题时说过,实际上是不可能的。我们已指出两个实体不可能同占一个空间,并依照同样的论点,指出了其它的潜能与特质也只能涵存于可感觉事物之中,而不能公开来独在。这个我们已说过。按照这理论,这也是明显的,任何实体均不可能分开;因为实体之分必在面,面必在线,线必在点,若是者,如点为不可分割,则线、面、体亦逐依次为不能分开。这类实是为可感觉对象,或者本身不是可感觉对象,却参加于可感觉对象之中,这又有何分别?结果是一样的;如可感觉对象被区分,参加于其中的对象亦必被区分,如其不然,则可感觉实是便不能区分之使另成独立的数理实是。
但,又,这样的实是不可能独立存在。如在可感觉立体以外另有与之分离而且先于它们的一些立体,则在面以外也得有其它分离的面,点线亦复如此;这样才能讲得通。但,这些倘获得存在,则在数理立体的面线点以外又必更有分离的面线点。(因为单体必先于组合体,如在可感觉立体之先有无感觉立体,按照同样论点,自由存在的面必然先于那固定了的诸立体。所以这些面线将是那些思想家们所拟数理立体身上的数理面线之外的另一套面线;数理立体身上的面线与此立体同在,而那另一套则将先于数理立体面存在。)于是,按照同样论点,在这些先天面线之外,又得有先于它们的线点;
在这些先天线点之外,又有先于它们的点,到这先于而又先于之点以外,才更无别点。现在(一)这里积已颇为荒谬;因为我们在可感觉立体之外招致了另一套立体;三套面,——
脱离可感觉立体的一套,在数理立体身上的一套,还有脱离数理立体而自由存在的一套;四套线,与五套的点。于是数学应研究那一套呢?当然不是那存在于固定立体身上的面线点;因为学术常研究先于诸事物。(二)同样的道理也将应用于数;在每一套的点以外可以有另一套单位,在每套现存事物之外可有另一套可感觉数,在可感觉数之外