如果他们放弃对“百发百中”的追求,他们的预测会更好一些!为什么会是这样的呢?
让我们想想这一情境背后的逻辑。在以70:30的比例随机点亮红灯或蓝灯的情况下,如果被试在70%的测试中预测红灯会亮,30%的测试中预测蓝灯会亮,他的准确率会是多少呢?我们将用实验中间部分的100个测试来计算——因为那时被试已经注意到红灯亮的次数比蓝灯多,从而开始在70%的测试中预测红灯会亮了。在100次测试中有70次红灯亮了,所以被试在这70次中有70%的正确率(因为被试在70%的测试中预测红灯会亮),也就是说,被拭在70次中有49次正确的预测;100次测试中有30次蓝灯亮了,被试在这30次中有30%的正确率(因为被试在30%的测试中预测蓝灯会亮),也就是说,被试在30次中有9次正确的预测。因而,在100次测试中,被试的正确预测是58次。但是,请注意,这是多么可怜的成绩啊!如果被试在注意到哪一盏灯亮得比较多后,就总是预测那盏灯会亮——在本实验中,就是注意到红灯亮的次数比较多,因此就总是预测红灯会亮(姑且称之为“百分百红灯策略”),那么,他在100次测试中会有70次正确的预测。虽然在蓝灯亮的30次测试里,被试将没有一次正确的预测,但是总准确率仍然高达70%——比在红灯与蓝灯之间来回变换以追求“百发百中”的58%的准确率要高12个百分点!
然而,百分百红灯策略取得的高准确率是要付出代价的:必须放弃“百发百中”的愿望。(显然,蓝灯偶尔亮的时候,被试始终是在预测红灯亮,也就是放弃了在蓝灯亮的测试中命中的机会)。这就是接受错误以减少错误。放弃不犯错误的想法,会让被试获得更高的总体准确度。同理,以一定的精度预测人类的行为时,有时也需要接受错误以减少错误,也就是,在依靠一般性的原则来做出比较准确的预测的同时,也要承认我们不可能在每件具体事情上都对。
但是,“接受错误以减少错误”做起来很难。在心理学领域里,40年来关于临床预测和统计预测的研究就证明了这一点。统计预测是指依据统计资料中得出的群体趋势所作的预测。本章一开始所讨论的群体(也就是总体)预测就是属于这种预测。一种简单的统计预测是,针对凡是具有某种特征的所有个体,做出相同的预测。例如,预测不吸烟者的寿命是77.5岁,而吸烟的人是64.3岁,就是一个统计预测。如果考虑的群体特征不只一个(运用第5章谈到的复杂相关技术——尤其是多元回归技术)将令我们的预测更加准确。例如,预测吸烟、肥胖且不运动者的寿命是58.2岁,就是在一个多变量(吸烟行为、体重和运动量)基础上的统计预测,这样的预测总是比单变量的预测更加准确。统计预测在经济学、人力资源、犯罪学、商业与市场学以及医学等领域都很常见。
在心理学的许多分支领域,如认知心理学、发展心理学、组织心理学、人格心理学与社会心理学中,其知识都是通过统计预测来表述的。相反,一些临床心理从业者则声称他们可以超越群体预测,对特定个体做出百分之百准确的预测,这种预测被称为临床预测或个案预测。与统计预测相反,临床预测是这样的:
临床预测似乎可以视为是对统计预测的有用补充,但问题是,临床预测并不准确。
如果证明临床预测是有效的,那么一个临床医生与他的病人接触的经验以及有效运用病人所提供的信息,应该使他能够提出比较好的预测,这个预测一定能胜过对病人信息进行编码、然后输入能够对量化数据加工的统计程序而得到的预测结果。总之,有人主张说,临床心理从业者的经验使得他们能够超越尚未由研究揭示的关系。“临床预测是有效的”这一观点很容易验证,不幸