字体
第(2/5)页
关灯
   存书签 书架管理 返回目录

    自古以来,人们总是假定活系统是为了某种目的和任务的。动物和人的器官是典型的功能结构的例子,是由生理学和解剖学探讨的。医学的功能结构在复杂系统框架中如何来理解呢

    脉管网的复杂分叉是分形结构的一个例子。树木c蕨类c珊瑚和其他一些生长系统,用分形都可以很好地描述。在第5章“人工智能”中,我们还将讨论模拟树木的分形生长的递归和计算机辅助的程序。心脏的血管树向我们显示了分支和主干的复杂网络。人们感叹血管通过毛细管延伸进细胞分裂c分化区而出现生长,这却是相当自然的。

    伸进开放空间的树枝有扩展的余地。但是,心脏c肺和其他器官占据了有限的空间。神经网和其中的脉管是服务于这些空间的基本占据者的。微血管网络的结构实际上完全是由器官的细胞来定义的。在骨胳肌肉和心脏肌肉中,微血管平行于肌肉细胞进行排列,有一些交叉分支。神经或脉管系统为获取最小阻力线路的需要,引导着系统的生长。

    这导致了医学上相当有趣的问题,分形的生长和脉管网络的形式是否导致了为人们观察到的心脏中流的异质性的出现。分支网的一个简单算法示意在图39中,它导致适当的局域流的几率密度函数。一个器官的分形系统成为了一种功能结构。

    支气管网络的分形例子,对于医生把这些探究方式运用于肺部是一个启发。从银河星团到分于扩散,物理系统常常显示出分形行为。显然,活系统也常常是可以用分形算法很好描述的。脉管网络c扩散过程和透膜输送可能具有心脏的分形特征。这些分形特征提供了一个基础,使得医生能够理解更多的整体性行为,如心房或心室纤维震颤和渗透性。

    正如我们已经在24节中看到的,非线性动力学允许我们描述湍流的出现,这是动脉血管中血液流动的一个大的医学问题。湍流可以是极限环的基础,如同水流通过圆柱管时表现出来的那样。有许多种控制系统会产生振荡。也许可以期待,某些振荡控制系统会表现出混沌行为。

    心房和心室纤维震颤,是显示出混沌的经典现象。在临床陈述中,心房纤维心率震颤是不规则的无规行为。心房表面以明显混沌的方式脉动。不过,对重返现象和心室纤维震颤的研究表明了激发模式的存在,再一次说明了这是组织起来的“数学的”混沌。对此已提出了分形和混沌算法。图310的两条曲线示意出现则的和混沌的心脏跳动。

    然而,混沌状态不可能一般地被看作疾病,而规则状态也不能一般地代表健康。有限的混沌吸引子保护着有机体免受危险的僵死性。当环境迅速地c难以预料地发生变化时,器官必须要能够以灵活的方式作出反应。心脏搏动率和呼吸率决非如同理想摆的力学模型那样一成不变。

    人体中单个器官和整个机体,都必须被理解为具有高度敏感性的非线性复杂动力系统的系统。将它们的控制参量调节到临界值,可能引起不可逆发展的相变,显示着人体健康的不同程度的危险景象。耗散的复杂结构是开放系统,它不可能与其周围环境分离开来。因此,在复杂动力系统探究方式的背景中,必须大力批判经典的“机械论的”医学观点把人体分成由高度专业化的专家来处理的种种特定部分。整个身体大于其部分之和。令人惊奇地看到,从现代复杂动力系统的观点来看,自古以来的对传统医生的需求再一次得到了支持,即医学不仅仅是一门分析的科学,它也是一种治疗的艺术,它必须考虑健康和生病的整体性。

    34复杂系统和群体生态学

    生态系统是自然界物理的c化学的和生物的组分有结构有功能地组织起来的系统。生态学是关于自然界的这些活的和死的组分如何在功能上结合起来的科学。显然,在复杂系统探究方式的框架中,生态学必须涉及极
上一页 目录 下一页