字体
第(2/5)页
关灯
   存书签 书架管理 返回目录
二定律并没有错,但是它们在经验上局限于近似孤立的微观子系统c宇宙系统或实验室中制备的条件。这一情形可以与牛顿的经典力学相比拟。在爱因斯坦提出了狭义相对论以后,它并不就是错了,而是不再成为物理学的普遍框架了,现在只适用于相对光速较慢的运动。自然界的绝大部分现象,都必须用动力系统来建模,动力系统并不存在于波耳兹曼的一般平衡条件中,因为它们只存在于能量流和物质流之中。

    历史上,诸如麦克斯韦或吉布斯的基本贡献,只是适用于处理平衡的情形或无限地接近平衡的情形。非平衡热力学的先驱性工作是由例如皮埃尔杜恒在本世纪初开创的。但是他的工作直到昂萨格1931以后才引起人们的注意,后来还有普里戈金学派,哈肯学派,以及其他人开始研究远离热平衡的复杂系统行为。从历史的观点看,此情形可以与混沌理论和复杂哈密顿系统的发展相比较参见23节。彭加勒c麦克斯韦和其他人都已经发现并熟知了混沌现象。但是与非线性系统相联系的数学问题阻碍了绝大多数科学家去研究相应的模型。

    33复杂系统和有机物的进化

    开放系统不仅具有熵产生的内部来源,还有外部的伴随着能量或物质转化进入或来自其环境的熵产生来源。这些系统通过耗散和消耗能量而保持其结构,被伊利亚普里戈金称作“耗散结构”。我们已经了解了非生命的耗散系统如流体c激光和云彩,它们都是依赖于外部的能量流来保持其结构和组织的。非平衡系统与其环境交换能量和物质,保持自己一段时间处于远离热力学平衡态,并在局部出现熵减的状态。小的不稳定性和涨落导致不可逆的分叉,从而增加了可能行为的复杂性。

    对于亚里士多德的生长着和消亡着的“月下”世界,非线性演化方程的耗散结构数学理论为此提供了建模框架。人们惊奇地承认,亚里士多德的循环自然的思想,与作为相应微分方程的解的吸引子或极限环相对应。这些系统的循环本性,不仅仅适用于发展起稳定性,而且还适用于发展起其中的复杂结构等级。一个古代已经描述过的活系统循环,已成为借助进化反馈的自催化循环。

    其要点已被斯宾塞和波耳兹曼表述过,他们假定了前生物系统的进化,即可以通过一系列的转化而引起越来越复杂状态的等级。但是,与波耳兹曼的假设相反,这些转化只可能出现在远离热平衡态的非线性系统中。超过了一定的临界值,定态方式就变得不稳定,系统将演化到某种新的构型。通过一系列的不稳定性而进化,一个活系统必定要发展起某种程序,以增加其非线性作用和离开平衡态的距离。换言之,每一转化都必然使系统增加其熵产生。伊利亚普里戈金c曼弗雷德艾根以及其他人的进化反馈意味着,系统控制参量变化到超过一定的阈值,就会引起某种通过涨落的不稳定性,使耗散增加,从而又对阈值产生影响。

    随之而来的是,生命并非从某种简单的极其不可能的事件中起源,生命的进化并不违反物理学规律。正如我们已经知道的,波耳兹曼和莫诺的极大地超过生物进化的时间的巨涨落的思想,来自平衡态热力学。在平衡统计力学中发生耗散结构的几率例如贝纳德问题的周期性时间过程是微小的,而在远离平衡态时其发生的几率却等于1。因此,普里戈金争辩道:

    生命的出现遵从适合于特定运动学框架和远离平衡的条件的物理学规律,远不是麦克斯韦妖军队所为。

    在非线性复杂系统的数学框架中,人们提出了许多模拟生命的分子起源的模型。分子尺度上的复杂性是以大量潜在状态数为标志的,它居于现实的时间和空间的限度之中。

    例如,一个典型的小蛋白质分子包含的肽链大约有102个氨基酸基。自然的氨基酸有20种,这种长度的可能性序列为20100或10
上一页 目录 下一页