的机体中要输送的化学物的容器。许多高等有机体中都有一种贮存铁的蛋白质,叫做铁蛋白。它是一种不寻常的寄宿系统,其构成中包括一种有机宿主一种蛋白质和一种可变的无机寄主一种铁核。根据外部的需要,铁可以从此系统中排出,也可以结合进来。经常发现,复杂化学聚集体如p一ly一x一tates,以规则的凸多面体为基础,如同柏拉图固体。但是,它们的集体的电子性质和或者磁性质不可能归结为这些建筑块的已知性质。根据“从分子到材料”的结合酶,超分子化学应用此保守自组织的“蓝本”,在纳米尺度上去建筑起复杂的材料,它们在催化c电子c电化学c光学c磁和光化学诸方面具有新颖的性质。复合性质的材料是极为有趣的。超分子晶体管是一个例子,它可能会激起化学计算机的革命性的新发展。
在自然进化中,非常大和复杂的分子系统也是由基因指导的过程逐步产生的。纳米分子化学的保守自组织过程是非基因控制的反应。只有保守自组织和非保守自组织的聪明结合,才可以激发起基因出现之前的前生物进化。但是甚至在复杂有机体进化期间,保守自组织也必定会出现。在人类的技术进化中,这一原理被一再发现并得到应用。
另一方面,有一些系统,其有序和功能发挥并非是降低温度来实现的,而是保持某种通过其间的能量和物质流来实现的。熟悉的例子如动植物那样的活系统,它们需输入生物化学能。这种能量过程可以引起宏观模式如植物的生长c动物的行进等等的形成。但是这种有序的形成,决非是活系统专有的参见第3章。它是一种远离热平衡的耗散不可逆自组织,在物理学c化学和生物学中都可以发现。
正如热力学第二定律所说,与环境没有任何能量和物质交换的封闭系统,将向近平衡的无序状态发展。无序的程度由一种叫做“熵”的量来度量。热力学第二定律说,封闭系统中熵总是向其极大值增加。例如,使得一个冷物体与一个热物体接触,热的交换将使得两个物体都获得同样的温度,即一种无序的均匀的分子序。把一滴牛奶滴入咖啡中,牛奶最终扩散成一种无序的c均匀的牛奶咖啡混合物。人们从来没有观察到相反的过程。在此意义上,按照热力学第二定律,过程是不可逆的,具有唯一的方向。
流体力学中的一个例子是贝纳德不稳定性,它已经在24节的开头描述过。当加热流体层图220a达到某个临界值时,它开始了一种宏观运动图220b。因此,一个动态的很有序的空间模式是从无序的均匀的状态中出现的,只要保持了通过此系统的一定的能量流。
流体动力学中的另一个例子是流体绕一个圆柱流动的流。外部的控制参量又是流速的瑞利数r。在低速时,此流以均匀的方式出现图227a。高速时,出现了具有两个涡旋的新的宏观模式图227b。速度进一步增高,涡旋开始变成振荡图227c-d。在一定的临界值时,在圆柱后出现了湍流的无现和混沌的模式图227e。图227a-e示意出可能的吸引子:一个或多个不动点,分叉,振荡和准振荡吸引子,最终是分形混沌。
现代物理学和技术中,激光是一个著名的例子。固体激光器中有一根嵌进了特殊原子的材料棒。每一原子都可以由外部能量激发,导致光脉冲发射。材料棒末端的镜子可以用来对这些脉冲进行选择。如果脉冲是沿铀方向的,那么它们就会被多次反射,在激光器中呆的时间就比较长,而在其他方向上就会离去。在泵浦能量小时,激光器如同一盏普通白炽灯,因为此时原子相互地发射光脉冲图228a。到达一定的泵浦能量时,原子以一定的相振荡,形成单一有序的巨大长度的脉冲图228b。
激光束是一个由远离热平衡的耗散不可逆自组织形成宏观有序的例子。激光的能量的交换和处理