字体
第(1/3)页
关灯
   存书签 书架管理 返回目录
    假使大自然能在生物体内双向传递信息的话,就可能实现以基因和基因产物之间双向交流为前提的拉马克进化。拉式进化,优势巨大。当羚羊需要跑得更快以逃离狮口时,它可以利用由身体到基因的交流方式引导基因制作快腿肌肉,再把革新后的基因传递给后代。这样一来,进化的过程将大大加快。

    不过,拉马克进化需要生物体能够为其基因编制有效的索引。如果生物体遇到了严酷的环境——比如说海拔极高——它就会通知体内所有能影响呼吸的基因,要求它们进行调整。身体无疑能通过激素和化学反应把消息通知到各个器官。如果能精准到司职的那些基因的话,身体也能把同样的消息传递给它们。然而,这正是缺失的那一步簿记活儿。身体并不记录自己是如何解决问题的,因此也就不能确定到底是哪个基因被用来在铁匠的肱二头肌上给肌肉充血,或者哪个基因是用来调节呼吸和血压的。生物体内有数百万个基因,可以生成数十亿个特征——一个基因能生成不止一个特征,而一个特征也可能由不止一个基因生成。——簿记和索引的复杂性将远超过生物体本身的复杂性。

    所以,与其说躯体内的信息不能向基因方向传递,不如说由于消息没有确切的递送目的,才使信息传递受到了阻碍。基因中没有管理信息交通的中央管理局。基因组就是极致的分权系统——蔓生的冗余片断,大规模并行处理,没有主管,无人监察各个事务。

    如果有办法解决这个问题又会怎么样呢?真正的双向遗传通信将引发一连串有趣的问题:这样的机制会带来生物学上的进步么?拉马克式生物学还需要些什么?是否曾出现过通往这一机制的生物路径?如果双向通信是可能的,为什么这种情况还没有发生?我们能通过思想实验勾勒出一种可行的拉马克式生物进化学说吗?

    拉马克式生物学十有八九需要一种高度复杂形式——一种智能——而多数生物的复杂性都达不到这个水平。在复杂性富足到可以产生智能的地方,譬如人类和人类组织,以及他们的机器人后裔,拉马克进化不仅可能,而且先进。阿克里和利特曼已经展示,由人类编程的计算机能运行拉马克进化。

    在最近十年里(指1984-1994),主流生物学家已经认可了一些标新立异的生物学家鼓吹了一个世纪的言论:如果一个生物体内获得了足够的复杂性,它就可以利用自己的身体将进化所需的信息教给基因。因为这种机制实际上是进化和学习的混合,因而在人工领域中最具潜力。

    每个动物的躯体都有一种与生俱来且有限的能力来适应不同环境。人类能适应比目前高得多的海拔地区的生活。我们的心率、血压和肺活量必须也一定会自我调整以适应较低的气压。当我们转移到低海拔地区时,同样的变化就颠倒过来。不过,我们能适应的海拔高度是有限的。对我们人类来说,就是在海平面以上2万英尺。超过这个海拔,人体自我调整的能力达到极限,无法长期停留。

    设想一下住在安第斯高山上的居民的生活状况。他们从平原迁移到一个空气稀薄之地,严格说来那里不是最适合他们居住的地方。几千年的高山生活中,他们的心肺和他们的身体为了能适应高海拔环境,不得不超负荷运转。假如他们的村里出生了一个“怪人”,他的身体在基因上有处理高海拔压力的更好方式——比如说,有更好的一种血红蛋白变体,而不是更快的心跳——那么这个怪人就有了一种优势。如果怪人又有了孩子,那么这种特征就有可能在村子里代代相传,因为它有利于降低心肺承受的压力。根据达尔文的自然选择原理,这种适应高地生活的突变就开始主宰小村人群的基因库。

    乍看之下,这似乎正是经典的达尔文进化。但是,为了使达尔文进化能够进行,生物首先必须在未得益于基因改变的条件下,在
上一章 目录 下一页