字体
第(1/3)页
关灯
   存书签 书架管理 返回目录
    如果说自然是建立在恒久流变的基础之上,那么不稳定性可能就是引起自然界生物类型丰富多彩的原因。不稳定的自然力量是多样性产生的根源,这种想法与一条古老的环境主义格言背道而驰:即稳定性产生多样性,多样性又带来稳定性。但如果自然的系统的确并不趋向精致的平衡,我们就应该习惯于和不稳定打交道。

    在二十世纪六十年代后期,生物学家最终获得计算机的帮助,开始在硅晶网络上建立动态生态系统和食物链网络模型。他们试图回答的首批问题之一是,稳定性来自于何方?如果在虚拟网络上创建掠食者和被掠食者的相互关系,是什么条件致使二者稳定下来演绎一段长期共同进化的二重奏,又是什么条件会使这些虚拟生物难以为继?

    最早的模拟稳定性的论文中有一篇是加德纳和艾希比在1970年合作发表的。艾希比是一位工程师,他对正反馈回路的种种优点和非线性控制电路很感兴趣。他俩在电脑上为简单的网络回路编制出数百种变化,并系统地改变节点的数量和节点间的关联度。他们发现了惊奇的一幕:如果增加关联度至超过某一临界值,系统从外界扰动中回复的能力就会突然降低。换句话说,与简单的系统相比,复杂的系统更有可能不稳定。

    次年,理论生物学家罗伯特·梅也公布了类似的结论。梅在电脑上运行生态模型,一些模拟的生态群落包含大批互相作用的物种,另一些则只包含极少的物种。他的结论与稳定/多样性的共识相抵触。他提醒大家,不要简单地认为增加物种混合的复杂性就能带来稳定性。相反,梅的模拟生态学认为,简单性和复杂性对稳定性的影响,并不如物种间相互作用的模式来得大。

    “一开始,生态学家建立起简单的数学模型和简单的实验室微观系统,他们搞砸了。物种迅速消失。”斯图亚特·皮姆告诉我,“后来,生态学家在电脑上和水族箱里建立了更复杂的系统,他们以为这样会好些。他们错了,甚至搞得更糟。复杂性只会让事情变得异常困难——因为参数必须正好合适。所以,除非它确实简单(单猎物-单资源的种群模型),否则随机建立一个模型是行不通的。增加多样性、加强互相作用或者增加食物链长度,它们很快也会达到崩溃的地步。这是加德纳、艾希比、梅和我对食物网络所作的早期研究的主题。但继续在系统里加入物种,不断地让它们崩溃,它们竟然最终混合在一起,不再崩溃,突然获得了自然的秩序。它们经过大量反复的杂乱失败才走上正轨。我们所知道的获得稳定持续的复杂系统的唯一方式,就是再三重复地把它们搭配在一起。就我所知,还没人能真正理解其有效的原因。”

    1991年,斯图亚特·皮姆和他的同事约翰·劳顿一起回顾了所有对野外食物链网进行的实地测量,通过数学方法分析,得出的结论是,“生物种群从灾难中恢复的比率……取决于食物链长度”和一个物种所对应的被掠食者和掠食者数量。昆虫吃树叶就是一条食物链的一环。龟吃掉吃叶子的昆虫就形成了一条食物链上的两环。狼也许处在离叶子很远的环节上。总体来说,当食物链越长,环境破坏带来的影响就会使得互相作用的食物链网越不稳定。

    西班牙生态学家罗蒙·马格列夫
上一章 目录 下一页