字体
第(1/8)页
关灯
   存书签 书架管理 返回目录
    "仅仅通过纯粹的逻辑思考,我们不能获得关于经验世界的任何知识。"

    ——阿尔伯特·爱因斯坦

    猴子脑中的一个特定神经元也许会对视野中某块特定区域的颜色敏感。但是我们又如何确定它直接参与了对该颜色的知觉呢?比如说,也许它只是脑把注意引向视野中那块区域的系统的一部分。倘若如此,一个人由于脑部损伤而失去了感知真实颜色的神经元,那么他所看到的世界只有黑白两色,但他的注意仍可能被引向一个色块。

    这不只是一个抽象的可能性。牛津的阿兰.考维(AlanCowey)及其同事详细地研究了一个由于脑部损伤而失去了颜色知觉的人(通俗他讲,他看不见颜色、只能看到黑色、白色及不同浓淡的灰色)。他们指出,实验中只要把两个小的颜色方块(被调节成等亮度)紧挨在一起,被试者就能说出两个方块的颜色是否相同。而事实上该被试者坚决否认他能感知两个方块的颜色。如果两个方块不挨着,他便无法完成这个任务,他的判断完全是一种猜测。这相当清楚地表明,脑在不感知颜色时仍能利用关于颜色的部分信息。

    为了发现猴子脑中某些神经元的反应是否与它所见到的事物有关,斯但福大学的威廉·纽瑟姆(wiiliamNewsome)做了一系列卓越的实验。实验中选择的皮层区域是MT区(有时称为"V5")。这里的神经元对运动响应良好,但对颜色没有直接反应,或者根本不响应(见第十一章)。已经有实验表明,该区域受损伤后猴子对视觉运动的响应变得困难。不过这种障碍常常在几周后逐渐减弱,这或许是脑学会了使用其他通路的缘故。

    继其他人的早期工作,纽瑟姆和同事们首先研究MT区的单个神经元对选定的运动信号怎样作出反应。这些信号是由显示在电视屏幕上的快速变化的随机点图组成的。一种极端情况是所有这些瞬变的点都朝一个方向运动。这种运动很容易被识别。另一种极端是使这些点的平均运动为零,这就像更换在电视频道时,屏幕上有时会看到"雪花"一样。观察者必须报告运动是沿给定的方向还是相反方向,当平均运动为零时,结果是随机的。

    纽瑟姆和同事们使用了这些闪烁图案的各种组合。如果所有的运动是朝一个方向,猴子(或人)总能正确地发出信号报告该运动方向,如果只有部分点朝一个方向运动而其他各点作随机运动,则观察者有时会犯错误。沿该特定方向运动的点所占的比例越小,犯错误就越多。通过改变这个比例,就有可能画出一条观察者的准确度与具有相同运动方向的点所占的百分比的变化关系的曲线。①使用一种特殊的数学手段,找出那些正以最有效的方式判断运动方向。

    他们总共研究了二百多个不同的神经元。其中大约三分之一的神经元判断的准确度与猴子相当。有些判断很差,但另一些对运动的判断比猴子要好得多。那么,既然猴子脑中有这些皮层神经元,为什么它不能更成功地做出判断呢?最可能的回答是,猴子不能仅仅选择一个神经元(即判断最有效的那个)来控制它的反应。它的脑必定使用了一群神经元。现在还不清楚它是如何做到这一点的。

    这个实验的确说明了做出选择所需的视觉信息存在于MT区的神经元的行为之中,因此我们不能说那些神经元不能完成这个任务。遗憾的是,这并不能证明它们确实执行了这个任务。

    纽瑟姆的下一个实验则更深入一步。他和同事们提出了这样一个问题:当猴子进行较难的鉴别任务时,如果我们能适当地刺激MT区的神经元并便它们发放,猴子的判断能否得到改进呢?

    从技术上讲要仅仅刺激一个神经元并不容易。幸亏在皮层MT区,具有相似反应形式(
上一章 目录 下一页